
4. Dedekind domains.

In this section we will introduce Dedekind domains (named after Richard Dedekind, Ger-
man mathematician 1831–1916). Rings of integers of number fields are important examples
of Dedekind domains. We show that the ideals of a Dedekind domain admit unique fac-
torization into prime ideals.

Definition. A commutative ring R is called Noetherian if every ideal of R is finitely
generated.

Lemma 4.1. Let R be a commutative ring. The following are equivalent:
(a) R is Noetherian.
(b) Every sequence of ideals of R

I1 ⊂ I2 ⊂ . . . ⊂ Ii ⊂ . . .

stabilizes, i.e. there exists an index i0 such that Ii = Ii0 for all i ≥ i0.
(c) Every non-empty collection Ω of R-ideals contains a maximal element i.e. an ideal I

such that no ideal J ∈ Ω contains I properly.

Proof. (a) ⇒ (b) Let I1 ⊂ I2 ⊂ . . . ⊂ Ii ⊂ . . . be a sequence of ideals of R. Suppose
the union I = ∪i≥1 is generated by α1, . . . , αm. For every αk there exists an index i such
that αk ∈ Ii. Writing N for the maximum of the indices i, we see that αk ∈ IN for all k.
Therefore I = IN and the sequences stabilizes.

(b) ⇒ (c) Suppose Ω is a non-empty collection without maximal elements. Pick
I = I1 ∈ Ω. Since I1 is not maximal, there exists an ideal I2 ∈ Ω such that I1 ⊂ 6= I2.
Similarly, there exists an ideal I3 ∈ Ω such that I2 ⊂6= I3. In this way we obtain a
sequence I1 ⊂ I2 ⊂ . . . ⊂ Ii ⊂ . . . that does not stabilize. This contradicts the fact that R
is Noetherian

(c) ⇒ (a) Let I be an ideal of R and let Ω be the collection of ideals J ⊂ I which are
finitely generated. Since (0) ∈ Ω, we see that Ω 6= ∅ and hence contains a maximal element
J . If J 6= I, we pick x ∈ I − J and we see that the ideal J + (x) properly contains J and
is in Ω. This contradicts the maximality of J . We conclude that I = J and the proof of
the lemma is complete.

Rings that appear in algebraic number theory and algebraic geometry are usually
Noetherian (named after Emmy Noether, German mathematician 1882–1935). Every prin-
cipal ideal domain is clearly Noetherian, so fields and the ring Z are Noetherian rings.
According to Exer.4.1., any quotient ring R/I of a Noetherian ring R is again Noetherian.
Finite products of Noetherian rings are Noetherian. The famous “Basissatz” of Hilbert
(David Hilbert, German mathematician 1862–1943) affirms that the polynomial ring R[T ]
is Noetherian whenever R is.

Non-Noetherian rings are often very large. For instance, the ring of continuous func-
tions R → R is not Noetherian. Neither is the ring R[X1, X1, X3, . . .] of polynomials in
countably many variables with coefficients in a commutative ring R.

Definition. Let R ⊂ S be an extension of commutative rings. An element x ∈ S is called
integral over R, if there exists a monic polynomial f(T ) ∈ R[T ] with f(x) = 0. A domain
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R is called integrally closed if every element in its field of fractions that is integral over R
is actually contained in R.

Using this terminology, one can say that the integers of number fields are, in fact,
integral over Z. Let F be a number field. By Prop. 3.3, the field of fractions of the ring of
integers OF of F is equal to F . By Prop.3.6 rings of integers are integrally closed. Other
examples of integrally closed rings are provided by Exer.4.3: every unique factorization
domain is integrally closed.

Definition. Let R be a commutative ring. The height of a prime ideal P = P0 of R is the
supremum of the integers n for which there exists a chain

P0 ⊂ P1 ⊂ P2 ⊂ . . . ⊂ Pn ⊂ R

of distinct prime ideals in R. The Krull dimension of a ring is the supremum of the heights
of the prime ideals of R.

For example, a field has Krull dimension 0 and the ring Z has dimension 1 (Wolfgang
Krull, German mathematician 1899–1971). In general, principal ideal domains that are not
fields, have dimension 1. It is easy to show that for every field K, the ring of polynomials
K[X1, . . . , Xn] has dimension at least n. The notion of dimension originates in algebraic
geometry: the ring of regular functions on an affine variety of dimension n over a field K
has Krull dimension equal to n.

Definition. A Dedekind domain is a Noetherian, integrally closed domain of dimension
at most 1.

By Exer.4.4, every principal ideal domain R is a Dedekind domain. Its dimension is 0 if R
is a field and 1 otherwise. The following proposition gives us many examples of Dedekind
domains.

Proposition 4.2. Let F be a number field. Then the ring of integers OF of F is a
Dedekind domain.

Proof. Proposition 3.3 says that OF is integrally closed. Proposition 3.9 (d) and (e) say
that OF is Noetherian and that every non-zero prime ideal of OF is maximal. This implies
that the dimension of OF is at most 1 and proves the proposition.

Lemma 4.3. Let R be a Noetherian domain. Then every non-zero ideal of R contains a
product of non-zero prime ideals.

Proof. Suppose that there exists an ideal that does not contain a product of non-zero
prime ideals. So, the collection Ω of such ideals is not empty. Since R is Noetherian, we
can, by Lemma 4.1 find an ideal I ∈ Ω such that every ideal J that properly contains I
is not in Ω. Clearly I is not prime itself. Therefore there exist x, y 6∈ I such that xy ∈ I.
The ideals I + (x) and I + (y) are strictly larger than I and hence contain a product of
non-zero prime ideals. Say p1 · . . . · pr ⊂ I + (x) and p′1 · . . . · p′s ⊂ I + (y). Now we have
p1 · . . . · prp′1 · . . . · p′s ⊂ (I + (x))(I + (y)) ⊂ I contradicting the fact that I ∈ Ω.

This proves the Lemma.
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Lemma 4.3. Let R be a 1-dimensional Noetherian domain. Then for every proper R-ideal
I there exists an element a ∈ Frac(R)−R so that aI is contained in R.

Proof. Since I is proper, it is contained in a maximal ideal p. Let x ∈ I be a non-zero
element. By part (a), the ideal (x) contains a product of prime ideals. We may and do
assume that this product has a minimal number of factors. In particular, every proper
partial product is not contained in (a). So we have inclusions

p1 · · · · · pt ⊂ (x) ⊂ I ⊂ p.

One of the prime ideals pi is contained in p. Since R has Krull domension one, we must
have equality. Let’s say p = p1.

Next, let y 6= 0 be an element of
∏t
i=2 pi. Then y 6∈ (x), so that y/x is in the fraction

field of R, but not in R itself. Then a = y/x has the required property. Indeed, we have
inclusions

xaI = yI ⊂ p ·
t∏
i=2

pi ⊂ (x).

The lemma follows by dividing by x.

Lemma 4.4. Let R be a Dedekind domain. Let I ⊂ R be an ideal containing x 6= 0.
Then there is an ideal J of R with the property that IJ = (x).

Proof. Put J = {b ∈ R : bI ⊂ (x)}. Since it contains x, this is a non-zero R-ideal. The set
1
xIJ is also an ideal. If it were a proper ideal, we apply Lemma 4.3 and find an element
a ∈ Frac(R) − R for which a

xIJ ⊂ R and hence aIJ ⊂ (x) and aIJ ⊂ I. The fact that
aIJ ⊂ I implies that elements in aJ are integral and hence in R. By definition of J it
follows that aJ ⊂ J . Since R is Noetherian, J is a finitely generated R-ideal. By Exercise
0.0 the element a is integral over R and is hence contained in R. Contradiction.

So we have 1
xIJ = R. Multiplying by x gives the result.

Corollary 4.5. Let R be a Dedekind domain and let I ⊂ J ⊂ R be non-zero ideals. Then
there is a unique ideal K ⊂ R for which KJ is equal to I.

Proof. Pick a non-zero element x in I. By Lemma 4.4 there exists an ideal K such that
KJ = (x). Then we have KI ⊂ (x) so that 1

xKI is an R-ideal. This ideal works. Indeed,
we have 1

xKIJ = I as required.
To prove uniqueness, suppose that K1J = K2J = I for two R-ideals K1 and K2. By

Lemma 4.6 there is a non-zero y ∈ J and and ideal J ′ so that JJ ′ = (y). This implies
yK1 = JJ ′K1 = J ′K2J = yK2 and hence K1 = K2.

Theorem 4.6. Let R be a Dedekind domain. Then every non-zero R-ideal is a product
of prime ideals. Moreover, the product is unique up to order of the factors.

Proof. Existence: let I be a non-zero R-ideal. If I = R, it is equal to an empty product of
prime ideals. If I 6= R, it is contained in a maximal ideal p1. By Corollary 4.5 there exists a
non-zero ideal I1 for which I = I1p1. We have I ⊂ I1 and this inclusion is proper. Indeed,
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if I = I1 we get I = Ip1. By Lemma 4.6 there is an ideal J so that IJ = (x) for some
non-zero x ∈ I. Multiplying by J we get (x) = xp1 and hence p1 = R, a contradiction.

If I1 = R we have I = p1 and we are done. If not, it is contained in a maximal ideal p2.
There exists a non-zero ideal I2 for which I1 = I2p1. We have I1 ⊂ I2. If I2 = R, we have
I1 = p2 and hence I = p1p2 and we are done. If not, I2 is contained in a maximal ideal
p3 . . . etcetera. Since R is Noetherian, the sequence of ideals I ⊂ I1 ⊂ I2 ⊂ . . . stabilizes.
Since the inclusions are proper, this means that Ik is equal to R when k is sufficiently
large.

Uniqueness: if two products p1 · · · pt and q1 · · · qs of prime ideals are equal, then we
have an inclusion p1 · · · pt ⊂ q1. this means that pj ⊂ q1 for some index j. We may assume
that j = 1. Since R has dimension 1, it follows that p1 = q1. By Lemma 4.6 there is
an ideal J of R for which Jp1 = (x) for some element x ∈ p1. Multiplying by J and
then dividing by x gives the relation p2 · · · pt = q2 · · · qs involving fewer prime ideals. The
uniqueness therefore follows by induction.

Definition. Let R be a Dedekind domain and let I be a non-zero ideal. We let

I =
∏
p

pmp ,

where p runs over the non-zero prime ideals of R and the exponents mp are in Z≥0. Only
finitely many exponents are non-zero. We put

ordp(I) = mp.

Theorem 4.6 implies
ordp(IJ) = ordp(I) + ordp(J)

for non-zero ideals I and J and a non-zero prime ideal p. We would like to say that the
ordp-function is a group homomorphism, but even though ideal multiplication is associative
and commutative with neutral element R, the ideals do not form a group because there
are no inverses. Therefore we extend the notion of ideal.

Definition. Let R be a Dedekind domain with field of fractions K. A fractional ideal
of R (or K) is an additive subgroup I of K with the property that for some α ∈ K∗ the
group αI is a non-zero ideal of R.

Ideals of R are clearly fractional ideals. For every α ∈ K∗, the set (α) = {λα : λ ∈ R}
is a fractional ideal. Ideals of this type are called principal ideals.

Proposition 4.7. Let R be a Dedekind domain with field of fractions K. Then
(a) Every non-zero ideal of R is a fractional ideal.
(b) If I and J are fractional ideals, then the product IJ defined by

IJ = {finite sums of products αiβi with αi ∈ I and βi ∈ J}

is a fractional ideal.
(c) For every fractional ideal I, the set I−1 = {α ∈ K : αI ⊂ R} is a fractional ideal.
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(d) The fractional ideals form a group Id(R) under multiplication. The neutral element
is R and the inverse of a fractional ideal I is I−1.

(e) For every α ∈ K∗ the set (α) = αR = {αr : r ∈ R} is a fractional ideal. Fractional
ideals of this form are called principal fractional ideals. They form a subgroup.

Proof. (a) is obvious.
(b) If α, β ∈ R satisfy αI ⊂ R and βJ ∈ R then αβIJ ⊂ R.
(c) Let α 6= 0 be any element in I. Then αI−1 ⊂ R is an ideal. This proves (c).
(d) We only need to show that I−1I = R. If it is not, then I−1I is a proper ideal of R. By
Lemma 4.3 there exists an element a ∈ Frac(R) − R for which we have xI−1I ⊂ R. This
implies xI−1 ⊂ I−1. Since I−1 is finitely generated over R, this implies that x is integral
and hence an element of R. Contradiction.
(e) This is clear.

Proposition 4.8. Let R be a Dedekind domain. Then
(a) Every fractional ideal I of R can be written in a unique way as

I =
∏
p

pmp ,

where the product runs over the prime ideals of R and the exponents mp are integers,
almost all of which are zero. The exponents satisfy mp ≥ 0 for all p if and only if I is
an R-ideal.

(b) The map

Id(R)
∼=−→⊕

p
Z

that sends I to the vector of exponents mp, is an isomorphism of groups.

Proof. There exists an element α ∈ K∗ so that J = αI is an R-ideal. By Theorem 4.6.
the ideals J and (α) admit a factorization into products of non-zero prime ideals. From
the factorizations J =

∏
p p

ap and (α) =
∏

p p
bp , we obtain

I =
∏
p

pap−bp

as required. By Theorem 4.6 the exponents mp = ap − bp are well defined and unique.
They do not depend on the choice of α. The fact that I is an R-ideal if and only if the
exponents mp are ≥ 0 for all p also follows from Theorem 4.6.

This implies (a). Part (b) follows from the formula ordp(IJ) = ordp(I) + ordp(J)

Definition. Let R be a Dedekind domain and let I be a fractional ideal. We let

I =
∏
p

pmp ,

where p runs over the non-zero prime ideals of R as in Proposition 4.8. We put

ordp(I) = mp.
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Every rational number is ±1 times a product of primes with exponents in Z, almost all
of which are zero. In fact, we have the following sequence of abelian groups

0 −→ {±1} −→ Q∗−→⊕
p

Z −→ 0.

Here α ∈ Q∗ is mapped to the vector mp of exponents in the factorization α = ±
∏
p p

mp .
We generalize this sequence to Dedekind domains and their fields of fractions.

Definition. Let R be a Dedekind domain with field of fractions K. We define a map

θ : K∗ −→ Id(R)

by θ(α) = (α).

The image of θ is the subgroup PId(R) of Id(R) of principal ideals. The kernel of θ is
precisely the group of units R∗ of R. The cokernel of θ is called the class group of R:

Cl(R) = cok(θ) = Id(R)/PId(R).

In other words, there is an exact sequence

0 −→ R∗ −→ K∗
θ−→ Id(R) −→ Cl(R) −→ 0.

The kernel and the cokernel of θ measure the difference between the group K∗ and the free
group Id(R). The class group measures how far R is from being a principal ideal domain.
Fields and, more generally, principal ideal domains have trivial class groups. The analogue
of the class group in algebraic geometry is the Picard group. For a smooth algebraic curve
this is the divisor group modulo its subgroup of principal divisors [30].

One can show [14], that every abelian group is isomorphic to the class group Cl(R)
of some Dedekind domain R. We will show in section 7 that the class group of the ring of
integer of a number field is always a finite group

Proposition 4.9. let R be a Dedekind domain. The following are equivalent:
(a) The class group Cl(R) is trivial.
(b) Every fractional ideal of R is principal.
(c) R is a principal ideal domain.
(d) R is a unique factorization domain.

Proof. The implications (a)⇒ (b)⇒ (c)⇒ (d) are easy or standard. To prove that (d)⇒
(a) we first note that by Theorem 4.6 it suffices to show that every prime ideal is principal.
Let, therefore, p be a non-zero prime ideal and let 0 6= π ∈ p. Writing π as a product of
irreducible elements and observing that p is prime, we see that p contains an irreducible
element π′. The ideal (π′) is a prime ideal. Since the ring R is a Dedekind domain, it has
Krull dimension 1. It follows that p = (π′) and hence that p is principal, as required.

Exercises.
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4.1 Show: If A is a Noetherian ring and I ⊂ A is an ideal, then A/I is also Noetherian.
4.2 Show that the ring C∞(R) = {f : R→ R : f is a continuous function} is not Noetherian.
4.3 Show that every unique factorization domain is integrally closed.
4.4 Prove that every principal ideal domain is a Dedekind domain.
4.5 (Hilbert’s Basissatz) Let A be a Noetherian ring and let I ⊂ A[X] be an ideal. For every

n ≥ 0 let Jn ⊂ A be the set containing 0 and the leading coefficients of polynomials in I of
degree at most n.
(a) Show that the Jn form an ascending sequence of A-ideals.

For each n let Sn ⊂ I be a finite set of polynomials of degree ≤ n in I whose leading
coefficients generate Jn.

(b) Let N ≥ 0 be such that Jn = JN for all n ≥ N . Show that ∪
n≤N

Sn generates the

A[X]-ideal I.
(c) Conclude that A[X] is Noetherian.

4.6 Let R be an integrally closed ring and let f ∈ R[X] be irreducible over K, the field of fractions
of R. Then f is irreducible over R.

4.7 Prove the Chinese Remainder Theorem: let R be a commutative ring and suppose that I
and J are two ideals of R that are relatively prime i.e. I + J = R. Then the canonical
homomorphism

R/IJ −→ R/I ×R/J

4.8 Consider the properties “Noetherian”, “integrally closed” and “of Krull dimension 1” that
characterize Dedekind domains. Give examples of rings that have two of these properties,
but not the third. is an isomorphism.

4.9 Let I and J be two fractional ideals of a Dedekind domain.
(i) Show that I ∩ J and I + J are fractional ideals.

(ii) Show that I−1 + J−1 = (I ∩ J)−1 and that I−1 ∩ J−1 = (I + J)−1.
(iii) Show that I ⊂ J if and only if J−1 ⊂ I−1.

4.10 Let R be a Dedekind domain. Show:
(a) a fractional ideal contained in R is an ideal of R.
(b) for α ∈ R and a fractional ideal I one has that αI ⊂ I.
(c) every fractional ideal I is of the form m−1J where m ∈ Z and J is an ideal of R.
(d) if I = (x) is a principal fractional ideal, then I−1 = (x−1).

4.11 Let I and J be fractional ideals of a Dedekind domain R. Let np and mp be the exponents
in their respective prime decompositions. Show that I ⊂ J ⇔ np ≥ mp for all primes p.

4.12 Let R be a Dedekind domain with only finitely many prime ideals. Show that R is a principal
ideal domain.

4.13 Show that in a Dedekind domain every ideal can be generated by at most two elements.
4.14 Let R be a Dedekind domain. Let S be a set of prime ideals of R. Let R′ be the subset of

the quotient field K of R defined by

R′ = {x ∈ K∗ : (x) =
∏
p

pnp with np ≥ 0 for all p 6∈ S} ∪ {0}.

Show that R′ is a Dedekind domain.
4.15 Let R be a Dedekind domain and let p and p′ be two different non-zero prime ideals of R.

Show that p + p′ = R.
4.16 Let R be a Dedekind domain and let x be in the field of fractions of R. Show that if we have

xJ ⊂ J for some fractional ideal J of R, then x is contained in R
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